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Numerical solution for the flow over a stretchable disk
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ABSTRACT

Numerical solution is obtained for the flow over a stretchable disk with or
without rotation. Similarity transformations are used to convert the highly non
linear governing partial differential equations to their ordinary differential form.
The transformed equations have been solved numerically, using SOR method and
Simpson’s (1/3) rule. The numerical results have been improved by Richardson’s
extrapolation. The velocity and pressure distributions have been obtained for
various values of disk rotation parameter s. When s=0, the flow corresponds to
purely stretchable disk and when s>0, the flow is related to a stretching and

rotating disk.
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. INTRODUCTION

The fluid flow due to stretchable surface
bears important application in extrusion
process in plastic and metal industries.
Sakiadas [1, 2] examined the boundary layer
flow on a continuously stretching surface with
a constant speed. Crane [3] obtained a
similarity solution in closed analytical form for
steady two dimensional incompressible
boundary layer flow caused by the stretching
of a sheet. Wang [4] studied the fluid flow
problem due to stretching boundary for three
dimensional case. Chiam [5] investigated
steady two dimensional stagnation point flow
of an incompressible fluid towards a stretching
surface. Mahapatra and Gupta [6, 7] combined
both the stagnation point flow and stretching
surface.  Several researchers including
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Carragher and Crane [8], Gupta and Gupta [9],
Liao and Pop [10] studied different aspects of
fluid flow due to moving boundaries. Shafique
and Rashid [11] examined the three
dimensional fluid motion caused by the
stretching of a flat surface. S. Hussain and M.
Kamal [12] examined flow of micropolar fluid
flow over a stretchable disk.

Ever since Von Karman [13] derived the
simplified equations that govern the flow over
a rotating disk, this problem and many
variations of it have attracted several classical
text books e.g.[14,15]and researchers. The
boundary layer transition and stability of
rotating disk flow has been studied by [16, 17].
S. Hussain et al [18] obtained numerical
solution of a decelerated rotating disk in a
viscous fluid. Fang [19] obtained exact
solution for steady state Navier-Stokes
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equations governing the flow over
stretchable disk.

In this paper, the problem of Fang [19] has
been studied numerically by using SOR
method, Richardson's extrapolation and
Simpson’s (1/3) rule for rang 0 <s <500. Fang
[19] obtained solution of the problem for range
0<s<200. The calculations have been
carried out using three different grid sizes to
check the accuracy of the results. The present
numerical results have also been compared

with the previous results and found in good

a

agreement. Our numerical scheme is easy,
straightforward and efficient.

I1. MATHEMATICAL ANALYSIS

The flow is steady and incompressible.
The cylindrical coordinates (r,6, z) are used, r
being the radial distance from the axis, € the
polar angle and z the normal distance from the
disk. The body force and the body couple are
neglected [12]. The Navier-Stokes equations in
components form are given below
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The following similarity transformations are used.

U=raF (), v=raG@),w=vJovH(@), p=pvoP() (5)

wheren = \/%z is the similarity variable, v being kinematics viscosity.

The equations (1) to (4) become:

2F+H'=0 (6)

FZ-G?+HF' =F" (7

2FG+HG' =G" (8)

—HH -2F' =P’ 9)

where primes denote differentiation with respect to 7.

The boundary conditions are:

n=0:F=0,G=s,H=0,P=0 n—>®:F=0G=0 (10)

where s shows the disk rotation strength relative to the disk stretching strength and named
as the disk rotation parameter. It is to be noticed that the similarity equations are obtained when
the disk stretching speed is proportional to radius of the disk.

In order to obtain the numerical solution of nonlinear ordinary differential equations (7)
and (8), these equations are discritized by central difference approximation at a typical point

n=n of the interval [0,00), we obtain

2 _ (7 _ 2R2
(4+2h Fn)Fn =(2 th)Fn+1+(2+th)Fn_1+2h G“n

2 — —
(4+4n°F )G =(2-hH )G .
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where h denotes a grid size and the equation (6) is integrated numerically. Also, the symbols
used denote Fn = F(771),Gn =G(77p) and Hp = H () . For computational purposes, we shall

replace the interval [0,0) by [0, b] where b is a sufficiently large.
The pressure equation (9) can be easily integrated to yield

P =2.-05(H )?-2F
n n n
with initial condition P(0)=0.

The finite difference equations (11) and
(12) are solved by using SOR iterative scheme
Hildebrand [20]. The equation (6) is integrated
using Simpson’s (1/3) rule Gerald [21] along
with the formula given in Milne [22]. These
equations are solved numerically at each
required grid point of interval [0, b] subject to
the appropriate boundary conditions.

The SOR procedure gives the solution of F

and G of order of accuracy O(h?) due to
second order finite differences and Simpson’s
(1/3) rule gives the order of accuracy O(h°)
for the solution of H . Higher order accuracy in
the solution of F and G, on the basis of above

solutions, is achieved by using Richardson's
extrapolation to the limit Burden [23].

I11. NUMERICAL RESULTS AND DISCUSSION

The calculations have been carried out for
the values of the parameter s in the range
0<s<500. In order to check the accuracy of
the numerical results for the velocity and
pressure distributions, they have been
computed on three different grid sizes namely
h=0.025, h=0.0125 and h=0.006.The results
are in good comparison with the previous
results Fang [19].

When the disk rotation parameter s=0, the
problem corresponds to a flow over a
stretchable disk only. In this situation, the flow
is caused by the stretching of the disk in the
radial direction, hence there is no flow in the
circumferential direction and value of G
remains zero. The numerical solutions for the
radial and axial components of velocity F and
H and the pressure P are found and presented
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in table 2.Graphically, the results of these
functions are demonstrated in fig.1.The
negative direction of the axial velocity
component H shows that the fluid is drawn
towards the wall under the effect of wall
stretching. The pressure near the disk is
smaller than the pressure in the outer region.
In fact, the pressure in the outer region pushes
the fluid towards the wall. The numerical
result for F’(0)=-1.736802 agrees with the

result F'(0) = —1.73721by Fang [19].

When the rotation parameter s>0, the
problem corresponds to the flow over a
rotating and stretching disk. The results of
velocity component F and G in the higher

order accuracy O(h®) are presented in table 2

for some values of parameter s. Tables 4 to 7
show the results calculated by using SOR
method and Simpson’s (1/3) rule for F, G, H
and P for finer grid size. Fig.2 shows the radial
velocity distribution F. The radial velocity
component near the disk exceeds the stretching
velocity for increasing values of the rotation
parameter due to increasing effect of
centrifugal force. The behavior of the
circumferential velocity G is shown in fig.3.
The axial velocity H increases in the negative
z-direction for larger values of the rotation
parameter due to the effect of disk rotation as
depicted in fig.4.The axial velocity at infinity
is shown in fig.7. Also, for increasing values
of s, the pressure decreases with the increase
in magnitude of the axial velocity. The
pressure at infinity is shown in fig.8.Figures 5
and 6 depict -F’(0) and —G’(0)for smaller
values of s. It is noted that the stretching shear
force -F’(0)and the rotating shear force
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—G’(0) both increase with for larger values of

s as shown in fig.9 and fig.10.The present
results for —H(wo)are compared with the

results are
previous results.

Tablel: comparison of present and previous results of -H (o)

previous results and presented in table 1. The
in good agreement with the

-H (o0) -H (o0)
S | Present numerical | Exact results S Present numerical | Exact results
results Fang[19] results Fang[19]
10 8.8778 8.84 35 16.5733 16.53
0 0
15 10.8808 10.82 40 17.7136 17.68
0 0
20 12.5439 12.50 45 18.7852 18.75
0 0
30 15.3485 15.31 50 19.7964 19.76
0 0

Table 2: Numerical results using SOR Method and Simpson’s Rule when s=0.0

h n F H P

0.006 | 0.000 1.000000 0.000000
0.000000
1.000 0.268108 -1.134358
0.820400
2.000 0.062058 -1.417810
0.870791
3.000 0.013431 -1.481724
0.875384
4,000 0.002455 -1.494970
0.877621
5.000 0.000000 -1.496835
0.879743

Table 3: Numerical results using Richardson’s Extrapolation Method
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s=0.5 s=1.0 s=5.0 s=12.0

n F G F G F G F

G

0.0 1.000000 0.500000 1.000000 1.000000 1.000000 5.000000 1.000000  12.00000
0.5 0535498 0.236008 0.560946 0.464197 0.990864 1.779583 1.610962  2.739678
1.0 0.259343 0.107532 0.273048 0.207204 0.410785 0.581111 0.401580  0.547712
1.5 0.112061 0.045372 0.116757 0.085732 0.134882 0.179089 0.081002  0.106055
2.0 0.037291 0.015001 0.038281 0.027862 0.034236 0.044909 0.013599  0.017700
2.5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000  0.000000
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Table 4: Numerical results using SOR method and Simpson’s rule for finer grid size

s=20 s=25
n F G H P n F G H P
0.0 1.000000 20.000000 0.000000 0.000000 0.0 1.000000 25.000000 0.000000 0.000000
0.5 1.974522 3.103420 -3.078369 -6.687223 0.5 2.028897 3.082407 -3.593653 -8.514965
1.0 0.297890 0.441044 -3.992418 -6.565481 1.0 0.240142 0.348114 -4.454495 -8.401550
1.5 0.037719 0.064568 -4.118944 -6.558289 1.5 0.024744 0.041718 -4.549553 -8.398707
2.0 0.004295 0.008271 -4.134635 -6.556193 2.0 0.002295 0.004326 -4.559203 -8.397755
2.5 0.000000 0.000000 -4.136082 -6.553586 2.5 0.000000 0.000000 -4.559941 -8.396531
Table 5: Numerical results using SOR method and Simpson’s rule for finer grid size
S=50 S=100
n F G H P | F G H P
0.0 1.000000 50.000000 0.000000 0.000000 0.0 1.000000 100.00000 0.000000 0.000000
0.5 1.810169 2510272 -5.739398 -8.090681 0.5 1.056100 1.399664 -8.657029 -37.584269
1.0 0.081311 0.106121 -6.304691 -18.037185 1.0 0.012418 0.015369 -8.893795 -37.574622
1.5 0.003434 0.004480 -6.329320 -18.037015 1.5 0.000147 0.000191 -8.896570 -37.574765
20 0.000139 0.000182 -6.330356 -18.036980 | 2.0 0.000002 0.000002 -8.896600 -37.574738
25 0.000000 0.000000 -6.330393 -18.036939 | 2.5 0.000000 0.000000 -8.896600 -37.574732
Table 6: Numerical results using SOR method and Simpson’s rule for finer grid size
S=200 S=300
n F G H P n F G H P
0.0 1.000000 200.000000 0.000000 0.000000 0.0 1.000000 300.000010 0.000000 0.000000
0.2 13.163144 19.473928 -10.295395 -77.323865 0.2 11.933286 16.713300 -13.721378 -16.004660
0.4 1.207087 1.586798 -12.344481 -76.607286 0.4 0594834 0.776724 -15.258152 -115.595250
0.6 0.098549 0.128332 -12.521959 -76.596814 0.6 0.027657 0.036001 -15.332169 -115.593000
0.8 0.007420 0.009657 -12.536232 -76.593381 0.8 0.001227 0.001598 -15.335591 -115.592620
1.0 0.000000 0.000000 -12.537153 -76.590079 1.0 0.000000 0.000000 -15.335728 -115.592250

Table 7: Numerical results using SOR method and Simpson’s rule for finer grid size

S = 400 s = 500

n F G H P n F G H P
0.0 1.000000 400.000000 0.000000 0.000000 0.0 1.000000 500.000000 0.000000 0.000000
0.2 10.199916 13.901022 -16.514964 -154.771860 | 0.2 8.538516 11.460753 -18.894074 -193.570060
0.4 0.308756 0.402487 -17.658889 -154.535710 0.4 0.167849 0.218728 -19.753061 -193.427410
0.6 0.008939 0.011641 -17.692764 -154.534830 0.6 0.003202 0.004173 -19.769698 -193.426900
0.8 0.000251 0.000327 -17.693740 -154.534720 0.8 0.000060 0.000078 -19.770015 -193.426870
1.0 0.000000 0.000000 -17.693763 -154.534630 1.0 0.000000 0.000000 -19.770020 -193.426830
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q 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1.5 +

Fig .1: Graph of F, H and P for the case: s=0

s=0.2,0.5, 1.0, 5.0, 12.0, 20, 25

0 0.5 1 n 15 2 2.5

Fig .2: Graph of F for different values of the parameter s
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0
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Fig.3: Graph of G for different values of the parameter s
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n
D 0.5 1 15 2 25
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Fig.4: Graph of H for different values of the parameter s
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Fig .5: Graph of F'(0)for different small values of the parameter s
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Fig .6: Graph of —G’(0) for different small values of the parameter s
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Fig .7: Graph of H (o) for different small values of the parameter s
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Fig.8: Graph of P (o) for different small values of the parameter s
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Fig .9: Graph of F'(0) for different large values of the parameter s
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Fig .10: Graph of -G’ (0) for different large values of the parameter s
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