New Efficient Fourth Order Method for Solving Nonlinear Equations

Farooq Ahmad ^{1, a} Sajjad Hussain ², Sifat Hussain ³, Arif Rafiq ⁴

farooqgujar@gmail.com, sajjad_h96@yahoo.com, sifat2003@gmail.com, arafiq@comsats.edu.pk
a: Corresponding author

¹Principal / Head of Institution / Associate Professor of Mathematics Government Degree College Darya Khan (Bhakkar) 30000, Punjab, Pakistan ^{2,3}Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, 60800, Pakistan

⁴Department of Mathematics, COMSATS Institute of Information Technology, Plot No. 30, Sector H-8/1, Islamabad 44000, Pakistan

ABSTRACT

In a paper [Appl. Math. Comput., 188 (2) (2007) 1587--1591], authors have suggested and analyzed a method for solving nonlinear equations. In the present work, we modified this method by using the finite difference scheme, which has a quintic convergence. We have compared this modified Halley method with some other iterative of fifth-orders convergence methods, which shows that this new method having convergence of fourth order, is efficient.

Keywords: Iterative methods, Convergence Order, Halley method, Jarratt method, Numerical Examples

I. Introduction

In last some years, several iterative type methods have been developed by using the Taylor series, decomposition and quadrature formulae, see [1--13] and the references therein. Using the technique of updating the solution and Taylor series expansion, Noor and Noor [10] have suggested and analyzed a sixth-order predictor--corrector iterative type Halley method for solving the nonlinear equations. Also Kou et al. [6, 7] have also suggested a class of fifth-order iterative methods. In the implementation of these methods, one has to evaluate the second derivative of the function, which is a serious

drawback of these methods. To overcome these drawbacks, we modify the predictor-corrector Halley method by replacing the second derivatives of the function f by its finite difference scheme. We prove that the new modified predictor-corrector method is of fifth-order convergence. We also present the comparison of the new method with the methods of Kou et al. [6, 7]. In passing, we would like to point out the results presented by Kou et al. [6, 7] are incorrect. We also rectify this error.

Some examples are given to illustrate the efficiency and robustness of the new proposed method.

II. ITERATIVE METHODS

The Jarratt's fourth-order method [8] which improves the order of convergence is defined by Algorithm 1

$$y_n = x_n - \frac{2f(x_n)}{3f'(x_n)}, \ f'(x_n) \neq 0$$
 1.1

$$x_{n+1} = x_n - Jf \frac{f(x_n)}{f'(x_n)},$$
 1.2

where

$$Jf = \frac{3f'(y_n) + f'(x_n)}{6f'(y_n) - 2f'(x_n)}.$$
 1.3

Recently, Kou et al. [5] considered the following two-step iteration scheme

Algorithm 2

$$y_n = x_n - Jf \frac{f(x_n)}{f'(x_n)}, \qquad 1.4$$

$$f'(x_n) \neq 0$$

$$x_{n+1} = y_n - \frac{f(y_n)}{f'(y_n)},$$
 1.5

where

$$Jf = \frac{3f'(y_n) + f'(x_n)}{6f'(y_n) - 2f'(x_n)}.$$
 1.6

We now state some fifth-order iterative methods which have been suggested by Noor and Noor [9] and Kou et al. [6,7] using quite different techniques.

Algorithm 3

$$y_n = x_n - \frac{2f(x_n)f'(x_n)}{2f'^2(x_n) - f(x_n)f''(x_n)}$$
1.7

$$f'(x_n) \neq 0$$

$$x_{n+1} = x_n - \frac{2[f(x_n) + f(y_n)]f'(x_n)}{2f'^2(y_n) - [f(x_n) + f(y_n)]f''(x_n)}, \qquad 1.8$$

which is a two-step Halley method of fifth-order convergent. In a paper Kou et al. [6, 7] have suggested following the iterative methods. Algorithm 4 (SHM [7]). For a given x0, compute the approximate solution $x_n \equiv by$ the iterative schemes:

$$y_{n} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$$

$$-\frac{f^{2}(x_{n})f''(x_{n})}{2f^{3}(x_{n}) - 2f(x_{n})f'(x_{n})f''(x_{n})}$$
1.9

where $f'(x_n) \neq 0$

$$x_{n+1} = y_n - \frac{f(y_n)}{f'(x_n) + (y_n - x_n)f''(x_n)},$$
 1.10

Algorithm 5 (ISHM [6]). For a given x0, compute the approximate solution x_{n+1} by the iterative schemes:

$$y_{n} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} - \frac{f^{2}(x_{n})f''(x_{n})}{2f^{3}(x_{n}) - 2f(x_{n})f'(x_{n})f''(x_{n})}$$
 1.11

where $f'(x_n) \neq 0$

$$x_{n+1} = y_n - \frac{f(y_n)}{f'(x_n)} - \frac{f''(x_n)f(y_n)}{2f^{3}(x_n)}.$$
 1.12

On the basis of above discussion, we propose new Iterative method (FGE):

Algorithm 6: The iterative technique is given by

$$y_n = x_n - \frac{2f(x_n)}{3f'(x_n)}, \ f'(x_n) \neq 0$$
 3.1

$$z_n = x_n - Jf \frac{f(x_n)}{f'(x_n)},$$
3.2

$$x_{n+1} = z_n - (1 - Jf) \frac{f(z_n)}{f'(x_n)},$$
 3.3

where

$$Jf = \frac{3f'(y_n) + f'(x_n)}{6f'(y_n) - 2f'(x_n)}.$$
 3.4

Convergence Analysis of the New Method

In this section, we compute the convergence order of the proposed method (FGE).

Theorem 1 Let $\alpha \in I$ be a simple zero of sufficiently differentiable function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ for an open interval I. If x_0 is close to α , then the three-step algorithm 6 has fourth order of convergence.

Proof The iterative technique is given by

$$y_n = x_n - \frac{2f(x_n)}{3f'(x_n)}, \ f'(x_n) \neq 0$$
 3.1

$$z_n = x_n - Jf \frac{f(x_n)}{f'(x_n)},$$
3.2

$$x_{n+1} = z_n - (1 - Jf) \frac{f(z_n)}{f'(x_n)},$$
 3.3

where

$$Jf = \frac{3f'(y_n) + f'(x_n)}{6f'(y_n) - 2f'(x_n)}.$$
 3.4

Let α be a simple zero of f. By Taylor's expansion, we have,

$$f(x_n) = f'(\alpha)[e_n + c_2 e_n^2 + c_3 e_n^3 + c_4 e_n^4 + c_5 e_n^5 + c_6 e_n^6 + c_7 e_n^7 + c_8 e_n^8 + c_9 e_n^9 + c_{10} e_n^{10} + O(e_n^{11})],$$
3.5

$$f'(x_n) = f'(\alpha)[1 + 2c_2e_n$$

$$+3c_3e_n^2 + 4c_4e_n^3 + 5c_5e_n^4$$

$$+6c_6e_n^5 + 7c_7e_n^6 + 8c_8e_n^7$$

$$+9c_9e_n^8 + 10c_{10}e_n^9 + O(e_n^{10})], \qquad 3.6$$

where

$$c_k = \left(\frac{1}{k!}\right) \frac{f^{(k)}(\alpha)}{f'(\alpha)}, \ k = 2, 3, ...,$$
and $e_n = x_n - \alpha$.

Using (3.1), (3.5) and (3.6) we have

$$y_n = \alpha + \frac{1}{3}e_n + \frac{2}{3}c_2e_n^2 + (\frac{4}{3}c_3 - \frac{4}{3}c_2^2)e_n^3 + O(e_n^4).$$
 3.7

By Taylor's series, we have

$$f(y_n) = f'(\alpha) \left[\frac{1}{3} e_n + \frac{7}{9} c_2 e_n^2 + (\frac{37}{27} c_3 - \frac{8}{9} c_2^2) e_n^3 + O(e_n^4), \right]$$
3.8

and

$$f'(y_n) = f'(\alpha) \left[(1 + \frac{2}{3}c_2 e_n + (\frac{4}{3}c_2^2 + \frac{1}{3}c_3)e_n^2 + (4c_2c_3 + \frac{8}{3}c_2^3 + \frac{4}{27}7c_4)e_n^3 + O(e_n^4). \right]$$
 3.10

Using (3.6) and (3.10) we have

$$Jf = 1 + c_2 e_n + (-c_2^2 + 2c_3)e_n^2 + (-2c_2 c_3 + \frac{26}{9}c_4)e_n^3 + O(e_n^4).$$
 3.11

Using (3.5), (3.5), (3.6) and (3.11) we have

$$z_{n} = \alpha + (\frac{1}{9}c_{4} + c_{2}^{3} - c_{2}c_{3})e_{n}^{4}$$

$$+(\frac{8}{27}c_{5} + 8c_{3}c_{2}^{2} - \frac{20}{9}c_{2}c_{4}$$

$$-2c_{3}^{2} - 4c_{2}^{4})e_{n}^{5} + O(e_{n}^{6}), \qquad 3.12$$

by Taylor's series, we have

$$f(z_n) = (\frac{1}{9}c_4 + c_2^3 - c_2c_3)e_n^4$$

$$+(\frac{8}{27}c_5 + 8c_3c_2^2 - \frac{20}{9}c_2c_4$$

$$-2c_3^2 - 4c_2^4)e_n^5 + O(e_n^6). \qquad 3.13$$

Using (3.6), (3.6), (3.11) and (3.12) we have

$$x_{n+1} = \alpha + (\frac{1}{9}c_4 - c_2c_3 + c_2^3)e_n^4 + O(e_n^5),$$

implies

$$e_{n+1} = (\frac{1}{9}c_4 - c_2c_3 + c_2^3)e_n^4 + O(e_n^5).$$

Thus we observe that the new three-step method (FGE) has fourth order convergence.

Numerical Examples

In this section we now consider some numerical examples to demonstrate the performance of the newly developed iterative method. We compare classical method (NW), Kou et al. method (see, [6]) (VCM) and (VSHM), Noor et al. methods (see [12]) (NR1) and (NR2) with the new developed method (FGE). All the computations for above mentioned methods, are performed using software Maple 9 , precision 128 digits and $\mathcal{E} = 10^{-15}$ as tolerance and also the following criteria is used for estimating the zero:

(i)
$$\delta = |x_{n+1} - x_n| < \varepsilon$$
,

(ii)
$$|f(x_n)| < \varepsilon$$
,

(iii) Maximum numbers of iterations = 500

We used the following examples for comparison:

TABLE OF FUNCTIONS / EXAMPLES					
Functions	Roots				
$f_1 = 4x^4 - 4x^2$	1				
$f_2 = (x-2)^{23} - 1$	3				
$f_3 = \exp(x) \cdot \sin(x) + \ln(x^2 + 1)$	3.237562984023				
$f_4 = (x+2)\exp(x) - 1$	-0.442854401002				
$f_5 = x^3 + 4x^2 - 15$	1.631980805566				
$f_6 = \exp(x^2 + 7x - 30) - 1$	3				
$f_7 = \exp(1-x) - 1$	1				
$f_8 = x^3 - 2x^2 - 5$	2.690647448028				
$f_9 = (x-1)\exp(-x)$	1				
$f_{10} = \frac{1}{x} - 1$	1				

Table - 1			
	Iterations	$f(x_n)$	δ
$f_1, x_0 = 0.75$			
NW	10	7.1e-40	5.9e-21
VCM	33	0	1.9e-42
VSHM	8	-1.0e-127	3.6e-25
NR1	5	1.8e - 37	9.5e-20
NR2	11	3.4e-36	4.1e-19
FGE	4	0	3.6e-122
$f_2, x_0 = 2.9$			
NW	13	7.0e - 44	1.6e-23
VCM	DIVERGE		
VSHM	DIVERGE		
NR1	6	1.9e-31	8.8e-19
NR2	20	3.1e-29	3.5e-16
• FGE	4	0	4.7e-103
f_3 , $x_0 = 2.9$			
NW	7	-1.1e-51	6.6e-27
VCM	DIVERGE		1.0.45
VSHM	4	5.0e-127	1.9e-67
NR1	4	-1.0e-9	1.2e-20
NR2	DIVERGE		2.5.60
FGE	3	5.0e-27	2.5e-69
$f_4, x_0 =9$		2.4.20	1-
NW	6	3.4e-29	5.5e-15
VCM	4	1.0e-127	4.8e-26
VSHM	4	-7.0e-128	5.2e-73
NR1	4	3.8e-38	1.8e-19
NR2	45	9.6e-50	2.8e-25
FGE	3	0	1.0e-87

Table - 3			
$f_5, x_0 = 0.9$			
NW	7	6.1e-51	2.6e - 26
VCM	6	1.0e-126	7.7e-43
VSHM	4	0	1.5e-67
NR1	4	5.6e - 40	8.0e - 21
NR2	14	1.6e-30	4.3e-18
FGE	3	0	3.0e-66
$f_6, x_0 = 2.8$			
NW	17	8.2e-33	9.8e-18
VCM	DIVERGE		
VSHM	DIVERGE	5.1e-37	1.0e-18
NR1	8	6.9e - 52	2.8e - 27
NR2	42	1.9e-33	4.7e-18
FGE	4	0	5.6e - 45

Table-4

f_7 , $x_0 = 1.1$			
NW	5	7.8e-42	3.9e-21
VCM	3	0	4.3e-39
VSHM	3	0	2.2e-42
NR1	3	2.4e-33	7.0e-17
NR2	4	4.9e-37	9.9e-19
FGE	2	0	9.1e-18
f_8 , $x_0 = 2$			
NW	7	1.0e-37	1.3e-19
VCM	53	0	3.7e-29
VSHM	4	-1.0e-126	2.8e-36
NR1	4	7.2e-38	1.0e-19
NR2	9	5.8e-51	3.1e-26
FGE	3	0	5.6e-52

isla i dellie journal of Multidiscipillary Research | Vol. 1, No. 1 | December 2013

Table-5			
$f_9, x_0 = 1$			
NW	1	0	0
VCM	DIVERGE		
VSHM	DIVERGE		
NR1	1	0	0
NR2	DIVERGE	_	
FGE	1	0	0
$f_{10}, x_0 = 1.5$			
NW	7	2.9e-39	5.4e-20
VCM	4	4.6e-105	3.0e-18
VSHM	4	0	8.3e-41
NR1	3	1.2e-38	1.1e-19
NR2	DIVERGE	_	
FGE	2	0	0

III. CONCLUSION

In the Table-1 to Table-5, we observe that our iterative method (FGE) is comparable with all the methods cited in the tables, 1-5, and gives better results. With the help of the technique and idea of this paper one can develop higher-order multi-step iterative methods for solving nonlinear equations, as well as a system of nonlinear equations.

REFERENCES

- [1] Amat, S. Busquier, S., Gutierrez, J. M. (2003). Geometric construction of iterative functions to solve nonlinear equations, J. Comput. Appl. Math. 157: 197--205.
- [2] Argyros, I. K., Chen, D., Qian, Q. (1994). The Jarratt method in Banach space setting, J. Comput. Appl. Math, 51:103-106.
- [3] Ezquerro, J. A., Hernandez, M. A. (2003). A uniparametric Halley-type iteration with free Second derivative, Int. J. pure Appl. Math. 6 (1) 103--114.
- [4] Ezquerro, J. A., Hernandez, M. A. (2004). On

- Halley-type iterations with free second Derivative, J. Comput. Appl. Math. 170 (2004) 455--459.
- [5] Halley, E. (1964). A new exact and easy method for finding the roots of equations generally and without any previous reduction, Phil. Roy. Soc. London 18: 136--147.
- [6[Kou, J. & Li,Y. (2007). The improvements of Chebyshev--Halley methods with fifth-order convergence, Appl. Math. Comput. 188 (1): 143-147.
- [7] Kou, J., Li, Y. & Wang, X. (2007). A family of fifth-order iterations composed of Newton and third-order methods, Appl. Math. Comput. 186 (2): 1258-1262
- [8] Kou, J. & Li, Y. (2007). An improvement of the Jarrat method, Appl. Math. Comput. 189 (2):1816-1821.
- [9] Melman, A. (1997). Geometry and convergence of Halley's method, SIAM Rev. 39 (4):728--735.
- [10] Noor, M. A. (2006). Numerical Analysis and Optimization, Lecture Notes, Mathematics Department, COMSATS Institute of information Technology, Islamabad, Pakistan.
- [11] Noor, M. A. & Noor, K. I. (2007). Fifth-order iterative methods for solving nonlinear

equations, Appl. Math. Comput. 188 (1): 406-410.

- [12] Noor, K. I. & Aslam Noor, M. (2007).
 Predictor--corrector Halley method for nonlinear equations, Appl. Math. Comput., 188
- (2):1587--1591.
- [13] Traub, J. F. (1964). Iterative Methods for Solution of Equations, Prentice-Hall, Englewood, Cliffs, NJ.

